SABR v3.0 artifact on Samsung Galaxy S4

Hi, I was referred here from the IRC channels to ask for help.

I work on an outside project which has similarities to what you do here, and I found the SABR v3.0 algorithm to be terrific for my goals.

It works great on all Android devices that can handle it in terms of performance (example - Nexus 4), and I fallback on devices that are too slow.

However, I recently tested on a friend’s new Galaxy S4, and found a major artifact issue with the shader. Since it will be a popular device in the time to come, it is important to workaround this - and I’m sure that your library will benefit as well from working correctly on that device.

The issue:

Screenshot for normal devices where it works:

Screenshot for Galaxy S4:

As you can see, the S4 version has “teeth” (45 degree edges). The size of each “tooth” like that is exactly like an original texel, so if the scale factor is x6, the teeth are 6x6 pixels.

I thought it might be a sampling problem, but I made the device use a stock shader (plain nearest neighbor sampling) and it looked like it worked as it should - big square pixels.

Since there are shader experts here, you might have good ideas on what’s causing this, how to check and how to workaround it.

I also wish to thank the developers for these great shaders - when my own project gets out (it’s under GPL) you will be mentioned.

UPDATE

Current shader code:

vertex.glsl:


precision mediump float;

uniform vec2 rubyTextureSize;

attribute vec4 vPosition;
attribute vec2 a_TexCoordinate;

varying vec2 tc;

void main() {
    gl_Position = vPosition;

    tc = a_TexCoordinate;
}

fragment.glsl:


precision mediump float;

/*
 Uniforms
 - rubyTexture: texture sampler
 - rubyTextureSize: size of the texture before rendering
 */

uniform sampler2D rubyTexture;
uniform vec2 rubyTextureSize;
uniform vec2 rubyTextureFract;

/*
 Varying attributes
 - tc: coordinate of the texel being processed
 - xyp_[]_[]_[]: a packed coordinate for 3 areas within the texture
 */

varying vec2 tc;

/*
 Constants
 */
/*
 Inequation coefficients for interpolation
 Equations are in the form: Ay + Bx = C
 45, 30, and 60 denote the angle from x each line the cooeficient variable set builds
 */
const vec4 Ai = vec4(1.0, -1.0, -1.0, 1.0);
const vec4 B45 = vec4(1.0, 1.0, -1.0, -1.0);
const vec4 C45 = vec4(1.5, 0.5, -0.5, 0.5);
const vec4 B30 = vec4(0.5, 2.0, -0.5, -2.0);
const vec4 C30 = vec4(1.0, 1.0, -0.5, 0.0);
const vec4 B60 = vec4(2.0, 0.5, -2.0, -0.5);
const vec4 C60 = vec4(2.0, 0.0, -1.0, 0.5);

const vec4 M45 = vec4(0.4, 0.4, 0.4, 0.4);
const vec4 M30 = vec4(0.2, 0.4, 0.2, 0.4);
const vec4 M60 = M30.yxwz;
const vec4 Mshift = vec4(0.2);

// Coefficient for weighted edge detection
const float coef = 2.0;
// Threshold for if luminance values are "equal"
const vec4 threshold = vec4(0.32);

// Conversion from RGB to Luminance (from GIMP)
const vec3 lum = vec3(0.21, 0.72, 0.07);

// Performs same logic operation as && for vectors
bvec4 _and_(bvec4 A, bvec4 B) {
    return bvec4(A.x && B.x, A.y && B.y, A.z && B.z, A.w && B.w);
}

// Performs same logic operation as || for vectors
bvec4 _or_(bvec4 A, bvec4 B) {
    return bvec4(A.x || B.x, A.y || B.y, A.z || B.z, A.w || B.w);
}

// Converts 4 3-color vectors into 1 4-value luminance vector
vec4 lum_to(vec3 v0, vec3 v1, vec3 v2, vec3 v3) {
    //    return vec4(dot(lum, v0), dot(lum, v1), dot(lum, v2), dot(lum, v3));

    return mat4(v0.x, v1.x, v2.x, v3.x, v0.y, v1.y, v2.y, v3.y, v0.z, v1.z,
            v2.z, v3.z, 0.0, 0.0, 0.0, 0.0) * vec4(lum, 0.0);
}

// Gets the difference between 2 4-value luminance vectors
vec4 lum_df(vec4 A, vec4 B) {
    return abs(A - B);
}

// Determines if 2 4-value luminance vectors are "equal" based on threshold
bvec4 lum_eq(vec4 A, vec4 B) {
    return lessThan(lum_df(A, B), threshold);
}

vec4 lum_wd(vec4 a, vec4 b, vec4 c, vec4 d, vec4 e, vec4 f, vec4 g, vec4 h) {
    return lum_df(a, b) + lum_df(a, c) + lum_df(d, e) + lum_df(d, f)
            + 4.0 * lum_df(g, h);
}

// Gets the difference between 2 3-value rgb colors
float c_df(vec3 c1, vec3 c2) {
    vec3 df = abs(c1 - c2);
    return df.r + df.g + df.b;
}

void main() {

    /*
     Mask for algorhithm
     +-----+-----+-----+-----+-----+
     |     |  1  |  2  |  3  |     |
     +-----+-----+-----+-----+-----+
     |  5  |  6  |  7  |  8  |  9  |
     +-----+-----+-----+-----+-----+
     | 10  | 11  | 12  | 13  | 14  |
     +-----+-----+-----+-----+-----+
     | 15  | 16  | 17  | 18  | 19  |
     +-----+-----+-----+-----+-----+
     |     | 21  | 22  | 23  |     |
     +-----+-----+-----+-----+-----+
     */

    float x = rubyTextureFract.x;
    float y = rubyTextureFract.y;

    vec4 xyp_1_2_3 = tc.xxxy + vec4(-x, 0.0, x, -2.0 * y);
    vec4 xyp_6_7_8 = tc.xxxy + vec4(-x, 0.0, x, -y);
    vec4 xyp_11_12_13 = tc.xxxy + vec4(-x, 0.0, x, 0.0);
    vec4 xyp_16_17_18 = tc.xxxy + vec4(-x, 0.0, x, y);
    vec4 xyp_21_22_23 = tc.xxxy + vec4(-x, 0.0, x, 2.0 * y);
    vec4 xyp_5_10_15 = tc.xyyy + vec4(-2.0 * x, -y, 0.0, y);
    vec4 xyp_9_14_9 = tc.xyyy + vec4(2.0 * x, -y, 0.0, y);

    // Get mask values by performing texture lookup with the uniform sampler
    vec3 P1 = texture2D(rubyTexture, xyp_1_2_3.xw).rgb;
    vec3 P2 = texture2D(rubyTexture, xyp_1_2_3.yw).rgb;
    vec3 P3 = texture2D(rubyTexture, xyp_1_2_3.zw).rgb;

    vec3 P6 = texture2D(rubyTexture, xyp_6_7_8.xw).rgb;
    vec3 P7 = texture2D(rubyTexture, xyp_6_7_8.yw).rgb;
    vec3 P8 = texture2D(rubyTexture, xyp_6_7_8.zw).rgb;

    vec3 P11 = texture2D(rubyTexture, xyp_11_12_13.xw).rgb;
    vec3 P12 = texture2D(rubyTexture, xyp_11_12_13.yw).rgb;
    vec3 P13 = texture2D(rubyTexture, xyp_11_12_13.zw).rgb;

    vec3 P16 = texture2D(rubyTexture, xyp_16_17_18.xw).rgb;
    vec3 P17 = texture2D(rubyTexture, xyp_16_17_18.yw).rgb;
    vec3 P18 = texture2D(rubyTexture, xyp_16_17_18.zw).rgb;

    vec3 P21 = texture2D(rubyTexture, xyp_21_22_23.xw).rgb;
    vec3 P22 = texture2D(rubyTexture, xyp_21_22_23.yw).rgb;
    vec3 P23 = texture2D(rubyTexture, xyp_21_22_23.zw).rgb;

    vec3 P5 = texture2D(rubyTexture, xyp_5_10_15.xy).rgb;
    vec3 P10 = texture2D(rubyTexture, xyp_5_10_15.xz).rgb;
    vec3 P15 = texture2D(rubyTexture, xyp_5_10_15.xw).rgb;

    vec3 P9 = texture2D(rubyTexture, xyp_9_14_9.xy).rgb;
    vec3 P14 = texture2D(rubyTexture, xyp_9_14_9.xz).rgb;
    vec3 P19 = texture2D(rubyTexture, xyp_9_14_9.xw).rgb;

    // Store luminance values of each point in groups of 4
    // so that we may operate on all four corners at once
    vec4 p7 = lum_to(P7, P11, P17, P13);
    vec4 p8 = lum_to(P8, P6, P16, P18);
    vec4 p11 = p7.yzwx; // P11, P17, P13, P7
    vec4 p12 = lum_to(P12, P12, P12, P12);
    vec4 p13 = p7.wxyz; // P13, P7,  P11, P17
    vec4 p14 = lum_to(P14, P2, P10, P22);
    vec4 p16 = p8.zwxy; // P16, P18, P8,  P6
    vec4 p17 = p7.zwxy; // P17, P13, P7,  P11
    vec4 p18 = p8.wxyz; // P18, P8,  P6,  P16
    vec4 p19 = lum_to(P19, P3, P5, P21);
    vec4 p22 = p14.wxyz; // P22, P14, P2,  P10
    vec4 p23 = lum_to(P23, P9, P1, P15);

    // Scale current texel coordinate to [0..1]
    vec2 fp = fract(tc * rubyTextureSize);

    // Determine amount of "smoothing" or mixing that could be done on texel corners
    vec4 AiMulFpy = Ai * fp.y;
    vec4 B45MulFpx = B45 * fp.x;
    vec4 ma45 = smoothstep(C45 - M45, C45 + M45, AiMulFpy + B45MulFpx);
    vec4 ma30 = smoothstep(C30 - M30, C30 + M30, AiMulFpy + B30 * fp.x);
    vec4 ma60 = smoothstep(C60 - M60, C60 + M60, AiMulFpy + B60 * fp.x);
    vec4 marn = smoothstep(C45 - M45 + Mshift, C45 + M45 + Mshift,
            AiMulFpy + B45MulFpx);

    // Perform edge weight calculations
    vec4 e45 = lum_wd(p12, p8, p16, p18, p22, p14, p17, p13);
    vec4 econt = lum_wd(p17, p11, p23, p13, p7, p19, p12, p18);
    vec4 e30 = lum_df(p13, p16);
    vec4 e60 = lum_df(p8, p17);

    // Calculate rule results for interpolation
    bvec4 r45_1 = _and_(notEqual(p12, p13), notEqual(p12, p17));
    bvec4 r45_2 = _and_(not (lum_eq(p13, p7)), not (lum_eq(p13, p8)));
    bvec4 r45_3 = _and_(not (lum_eq(p17, p11)), not (lum_eq(p17, p16)));
    bvec4 r45_4_1 = _and_(not (lum_eq(p13, p14)), not (lum_eq(p13, p19)));
    bvec4 r45_4_2 = _and_(not (lum_eq(p17, p22)), not (lum_eq(p17, p23)));
    bvec4 r45_4 = _and_(lum_eq(p12, p18), _or_(r45_4_1, r45_4_2));
    bvec4 r45_5 = _or_(lum_eq(p12, p16), lum_eq(p12, p8));
    bvec4 r45 = _and_(r45_1, _or_(_or_(_or_(r45_2, r45_3), r45_4), r45_5));
    bvec4 r30 = _and_(notEqual(p12, p16), notEqual(p11, p16));
    bvec4 r60 = _and_(notEqual(p12, p8), notEqual(p7, p8));

    // Combine rules with edge weights
    bvec4 edr45 = _and_(lessThan(e45, econt), r45);
    bvec4 edrrn = lessThanEqual(e45, econt);
    bvec4 edr30 = _and_(lessThanEqual(coef * e30, e60), r30);
    bvec4 edr60 = _and_(lessThanEqual(coef * e60, e30), r60);

    // Finalize interpolation rules and cast to float (0.0 for false, 1.0 for true)
    vec4 final45 = vec4(_and_(_and_(not (edr30), not (edr60)), edr45));
    vec4 final30 = vec4(_and_(_and_(edr45, not (edr60)), edr30));
    vec4 final60 = vec4(_and_(_and_(edr45, not (edr30)), edr60));
    vec4 final36 = vec4(_and_(_and_(edr60, edr30), edr45));
    vec4 finalrn = vec4(_and_(not (edr45), edrrn));

    // Determine the color to mix with for each corner
    vec4 px = step(lum_df(p12, p17), lum_df(p12, p13));

    // Determine the mix amounts by combining the final rule result and corresponding
    // mix amount for the rule in each corner
    vec4 mac = final36 * max(ma30, ma60) + final30 * ma30 + final60 * ma60
            + final45 * ma45 + finalrn * marn;

    /*
     Calculate the resulting color by traversing clockwise and counter-clockwise around
     the corners of the texel

     Finally choose the result that has the largest difference from the texel's original
     color
     */
    vec3 res1 = P12;
    res1 = mix(res1, mix(P13, P17, px.x), mac.x);
    res1 = mix(res1, mix(P7, P13, px.y), mac.y);
    res1 = mix(res1, mix(P11, P7, px.z), mac.z);
    res1 = mix(res1, mix(P17, P11, px.w), mac.w);

    vec3 res2 = P12;
    res2 = mix(res2, mix(P17, P11, px.w), mac.w);
    res2 = mix(res2, mix(P11, P7, px.z), mac.z);
    res2 = mix(res2, mix(P7, P13, px.y), mac.y);
    res2 = mix(res2, mix(P13, P17, px.x), mac.x);

    gl_FragColor = vec4(mix(res1, res2, step(c_df(P12, res1), c_df(P12, res2))),
            1.0);
}

There ARE some minor differences between my version and the SABR v3.0 GLSL version I started from (main one - reduced amount of varyings). Also it’s written for OpenGL ES 2.0 so I had to change some basic stuff like texCoord. There were never any problems with those so I assumed they are harmless. When I get the Galaxy S4 device back in my hands (Monday) I’ll be able to test xBR variations and see if the problem is caused by any change in particular.

Just wanted to update that the issue was resolved. I wish to thank some of the members on the IRC channel that gave me a good methodology for finding the problem area.

The problem was this piece of code:


// Converts 4 3-color vectors into 1 4-value luminance vector
vec4 lum_to(vec3 v0, vec3 v1, vec3 v2, vec3 v3) {
    //    return vec4(dot(lum, v0), dot(lum, v1), dot(lum, v2), dot(lum, v3));

    return mat4(v0.x, v1.x, v2.x, v3.x, v0.y, v1.y, v2.y, v3.y, v0.z, v1.z,
            v2.z, v3.z, 0.0, 0.0, 0.0, 0.0) * vec4(lum, 0.0);
}

The original line was commented out, and the new line is a small optimization that I introduced. It worked quite well, but apparently, the Galaxy S4 GPU didn’t like it and performed the calculation badly. I switched back to

return vec4(dot(lum, v0), dot(lum, v1), dot(lum, v2), dot(lum, v3));

And the problem was gone.

This optimization was never present in your version of SABR 3.0 so the problem won’t appear for you - but I would be extemely careful around different Android devices, as they tend to be inconsistent regarding shader results.

Ah, I’m glad to hear you got it figured out. Thanks for posting your solution :slight_smile:

This is good to know.

Pretty sure the dot-product version would be faster anyways. With 4x4 matrix you’re forcing extra ops that are useless (4th element is always 0 anyways). If the hardware has special matrix paths, perhaps … Code looks correct though, so looks like a driver bug indeed.